Analysis of a High Temperature Supercritical Brayton Cycle for Space Exploration
نویسندگان
چکیده
This paper provides a preliminary analysis of the supercritical Brayton cycle, a power generation system for space exploration. Supercritical working fluids increase efficiency due to increased compressibility at the critical point but have not been investigated at the high temperatures necessary for space power generation. Through computer simulation, the viability of the supercritical Brayton cycle is verified for space exploration. Several working fluids are evaluated. Results show efficiency increases of 221% over the sodium Rankine cycle and 105% over thermoelectric conversion. For future cycles at 1600 K, sulfur is the best working fluid. Given present materials constraints, iodine is the best fluid at 1200 K.
منابع مشابه
Thermodynamic Analysis and Optimization of a Novel Cogeneration System: Combination of a gas Turbine with Supercritical CO2 and Organic Rankine Cycles (TECHNICAL NOTE)
Thermodynamic analysis of a novel combined system which is combination of methane fired gas turbine cogeneration system (CGAM) with a supercritical CO2 recompression Brayton cycle (SCO2) and an Organic Rankine Cycle (ORC) is reported. Also, a comprehensive parametric study is performed to investigate the effects on the performance of the proposed system of some important parameters. Finally, a ...
متن کاملExergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle
In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...
متن کاملExergoeconomic analysis and genetic algorithm power optimization of an irreversible regenerative Brayton cycle
In this study, the performance of an irreversible regenerative Brayton cycle is sought through power maximizations using finite-time thermodynamic concept in finite-size components. Optimizations are performed using a genetic algorithm. In order to take into account the finite-time and finite-size concepts in the current problem, a dimensionless mass-flow rate parameter is used to deploy ti...
متن کاملThe Energy and Exergy Analysis of Integrated Hydrogen Production System Using High Temperature Steam Electrolysis with Optimized Water Path (RESEARCH NOTE)
In this research, solar-drived integrated Hydrogen production (HP) using high-temperature steam electrolysis (HTSE) is thermodynamically evaluated. This system includes an organic Rankine cycle (ORC), Rankine cycle, Brayton cycle, solar tower, and High Temperature Steam Electrolysis (HTSE). Solar energy supplies thermal energy. This heat source is applied for generating power. This energy is us...
متن کاملAnalysis and comparison of solar-heat driven Stirling, Brayton and Rankine cycles for space power generation
This paper presents an analysis of solar-heat driven Brayton, Rankine and Stirling cycles operating in space with different working fluids. Generation of power in space for terrestrial use can represent a great future opportunity: the low-temperature of space (~3 K), allows the attainment of very high efficiency even with low-temperature heat inputs, and the solar energy input is higher in spac...
متن کامل